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LETTER TO THE EDITOR 

Equation of state and isothermal compressibility for the hard 
hexagon model in the disordered regime 

Matthew P Richeyt and Craig A TracyS§II 
i Department of Mathematics, St Olaf College, Northfield, MN 55057, USA 
$ Department of Theoretical Physics, Research School of Physical Sciences, The Australian 
National University, Canberra, ACT 2601, Australia 

Received 8 July 1987 

Abstract. The equation of state for the hard hexagon model in the disordered regime is 
computed. The isothermal compressibility is given as a rational function of K and p. 

The hard hexagon model is a lattice gas on a triangular lattice with the rule that if a 
site is occupied, then the six neighbouring sites are necessarily vacant. Baxter (1980, 
1981) has shown that this model is exactly solvable by the method of commuting 
transfer matrices (Baxter 1972, 1982). In the disordered regime, Baxter's exact results 
are 

1 - X 5 n  * ( I  -X5n-1)2(1 -X5n-4)2(1 -X6n-3)2(1 -x6n-')(l - p - 4 )  

K=! n - 1  (-) 1-x6n (1 - X 5 n - 2  )- 3 (1 - X5'-3)3( 1 - X6n- I ) (  1 - X6n-5) (1) 

where K is the partition function per site in the thermodynamic limit (so p p  =In  K ) ,  

p is the density, and g is the activity. 
It is the purpose of this letter to compute the equation of state in the disordered 

regime. We find it is of the form 

P ( K ,  P )  = 0 (4) 
where P is a polynomial of degree eight in K and  degree 22 in p (see (19) and (20) 
below). Since the reduced isothermal compressibility, ,y = k g T p K T ,  KT = 
- ( l /  V ) ( a V / a p ) . ,  can also be written as x = K/(dK/dp), we conclude from (4) that 

(5) 

that is, x is expressed as a rational function of K and p with K and p satisfying (4). 

( a p / a K )  

( a P l a p )  
X = - K  

The critical point (Baxter 1980, 1981) of the hard hexagon model 

K ~ =  [(27/250)(25+ 1 1 ~ 5 ) ] ' ' ~  pc=  (5 - m 1 0  (6) 

5 Permanent address: Department of Mathematics, University of California, Davis, CA 95616, USA. 
11 Supported in part by the National Science Foundation, grant no DMS-8700867. 

0305-4470/87/ 161121 +06%02.50 0 1987 IOP Publishing Ltd L1121 



L1122 Letter to the Editor 

is a singular point of the algebraic curve (4). Explicitly, the point ( K ~ ,  p,) is a cusp 
with tangent line K - K ,  = 0. Due to the special form of (4) (see (20) below), P, as a 
polynomial in K,  is solvable by radicals. 

From either Baxter's results (1) and (2) or from (4) and ( 5 )  one can prove that as 
P + P C  

of which the first few terms are 

x ( p )  = [ ( 5  + J5)/75]t-'/'[ 1 - 2t' / '+:(  1 + 4Js) t + ~ ( t ~ ' ~ ) ]  

with t = f i ( p , - p ) .  Using (19)  and ( 5 ) ,  ,y is plotted as a function of p in figure 1 .  
A trivial example of our mathematical problem is the problem of going from 

x = cos 8, y = sin 8 to x 2 + y 2  = 1 .  Just as the trigonometric functions are invariant 
under certain symmetry groups, so are the functions appearing in (1)-(3) .  If we let 

= e 2 m i r  and define 

T I [ N ] = { A ~ S L ( 2 , Z ) I A =  * ( A  r) mod N} 

then we have the following theorem as proved by Tracy et a1 (1987) .  

Theorem. In the disordered regime, j ( ~ )  is a modular function with respect to the 
group r,[5], and K ( T )  and p ( ~ )  are modular functions with respect to the group rl [30]. 

0 0.1 0 2  P( 0 3  
P 

Figure 1. The reduced isothermal compressibility ,y as a function of density p. 
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It was also shown that the valence of K ( T )  is 22 and the valence of p ( ~ )  is eight. 
Modular function theory (Lehner 1964) now tells us there exists a polynomial relation 
of the form stated above. It is quite important for our method to know both the 
existence of this polynomial P and to have bounds on its degree. 

Before describing the details of our calculation, we stress that the general method 
has wider applicability, not only to other polynomial relations in the hard hexagon 
model (for example, there exists a polynomial relation between K in the disordered 
regime and K in the ordered regime) but also to other solvable models. This will be 
pursued in later work. 

The group rl [30] has 32 inequivalent cusps. One complete set of inequivalent 
c u s p s i s { i o o , o ~  1 2  1 1  2 1 3  1 1  1 1  1 2  1 2  7 9 I ' 5 1 11 2 
4 1  1 5 ,  , 5 ,  6, 2,  g}. At each of these cusps a local uniforming variable x is introduced 

9 2 ,  3 9  3 ,  4 ,  5 ,  5 9  5 9  5 ,  6 9  67 7 ,  8 9  9 9  9, I O ,  I O ,  lo, lo, fi, 3, 3, 14 ,  1 5 ,  1 5 ,  

and local expansions of K and p are computed. Perhaps the easiest way to see that 
such expansions exist is to rewrite (1) and (2) in terms of the Dedekind eta function 
and the generalised Dedekind eta function (see Schoeneberg 1974) and then to appeal 
to their known transformation properties under SL(2,Z). The details of this can be 
found in Tracy et a1 (1987); in particular, tables 2, 4 and 5. All the arguments which 
follow refer to these three tables. 

We first show that only even powers of K appear in (4). Pick y E SL(2, Z )  such 
that y(ic0) = g. For this y, K is sent to - K  and p is sent to itself as seen from tables 
4 and 5. Hence 

P ( K ,  P )  = o =  Y ( P ( K ,  p ) ) =  P ( Y ( K ) ,  Y ( P ) )  = P(--K, P I .  

We therefore write 

O s j s 4  

For notational convenience we set k = K ' .  We now present an algorithm to determine 
the coefficients c , ~ .  

Step 1. To leading order, at the cusps 2 and A, we have k = k,x-"  and k = k2x-lo with 
k, = -c:/lOO, k2=  -c:/lOO, c, = s i n 2 ( r / 5 )  sin3(2r/5) and c2=  sin2(2.rr/5)/sin3(r/5), 
respectively. The density, to leading order, is p = pox-' at the cusp 2 and p = -pox-' 
at the cusp A with pa= [4sin(.rr/5) s in(2~/5) ] - ' .  As always, the x refers to the local 
uniformising variable at the cusp. At either of these cusps, since P 0, we can eliminate 
terms which contribute poles. The highest-order pole (=62) comes from the single 
term p2'k4 implying that c22.4 = 0. Setting c22,4 = 0 in (8), we look at the coefficient of 
the next highest pole (=61) which must be zero. In this way c, ,~ = 0 f o r j  = 22,21, , . . , 13. 
For a pole of order 52, two different terms contribute: ~ ~ ~ , ~ p ~ ~ k ~ +  ~ , ~ , , p ~ ' k ~ .  Consider- 
ing the leading behaviour of this expression at both cusps 2 and $ leads to a system 
of linear equations 

which has the unique solution c12,4 = ~ 2 2 . 3  = 0. Once we know these coefficients are 
zero, the next-highest pole is of order 51, resulting in the system 
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Repeating this argument we obtain 

f o r j  = 10 ,9 , .  . . , 3  

corresponding to pole orders 50, 4 9 , .  . . ,43 ,  respectively. For a pole of order 42 there 
are three terms contributing; namely, 

(12) 12 3 k -  + ~ ~ ~ ~ p ~ ~ k ~ .  

Since there are a pair of cusps and three unknowns, we cannot from this determine 
the coefficients. However, (12) will give an internal check later. 

Step 2. Consider the cusp &,. Here the leading order behaviour is k = x - ~  and p = 1 .  
At this cusp, P ( K ,  p )  will have a pole of order eight coming from terms with a K~ 

( = k 4 ) .  In view of step 1 ,  these terms are 

~ ~ , ~ p ~ k ~ +  c,,,pk4+ ~ ~ , ~ k ~ .  

Considering the leading coefficient, this gives 

c2 ,4+c1 ,4+c0 .4=0 .  

Since f ( K ,  p )  is only defined up  to an  overall multiplicative factor, one coefficient is 
arbitrary. We can therefore take 

= 1 .  (13) 

Set c ~ , ~ =  z, so that = - 1  - z. 

Step3.  Next consider the cusps im, 3 ,  and A. Write k=Z?=,, k,,x" for j =  1 , 2 , 3  
and 4 corresponding to cusps ico, :, & and A, respectively (as seen from table 4 each 
of these points is a holomorphic point of k )  where k , O  = 1, kzo  = -432, k3,, = -27, and 
k40= 16. From table 5, the small x expansions of p at ico and : are identical as are 
the expansions of p at $j and A. At each of these four cusps p has a simple zero. 
Write p = Zz=o p l n x "  at cusps im and  3 and write p =E:=, p z n x n  at cusps & and A, 
and find from table 5 that p I I  = -1 and p Z l  = 1 .  For notational convenience write 

and let f ( n )  = E : = O p ' q , .  At these four cusps, the x o  term of the x expansion of P 
comes from qo, thus giving 

( 1 5 )  
where, as before, j = 1 ,  2, 3, 4 corresponds to cusps ico, :, & and A, respectively. This 
leads to the system of equations 

Coo + CO I k,o Coz ( k,o) * + Co3 ( k10) ' + Co4( k, 014 = 0 

Since B is invertible, the coefficients co,, j = O ,  1 ,  2, 3, are now uniquely determined 
and hence qo is now determined. 
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The coefficient of X I  in P is completely determined by P(1). I f f (x)  = X  anxn  is a 
cusp expansion at cusp p / q ,  denote by coef(f, x n ,  p / q )  the coefficient a,. Then extract- 
ing the coefficient of X I  from P(1) we obtain the system 

Thus cu, j = 0, 1,  2, 3 and q1 are determined in terms of z = ~ 1 4 .  We may repeat this 
process for each of the coefficients x2, x3,. . . , xI3, obtaining equations of similar 
structure to (17) .  In each case we can determine ciO,  c i l ,  ci2, and c i3 ,  i = 3 ,  4, . . . , 13 
as a function of z. At the i = 13 stage, however, we already know from ( 1  1 )  that 
c13,3 = 0. This condition determines z. Now the above process can be repeated for xI4, 
XI’, . . . , x22 terms. This determines all the coefficients cij in (8). 

The above algorithm was implemented on a SUN 3/50 workstation using the 
computer algebra software SMP. The results are more easily displayed if we first make 
the change of variable 

y = p - 1 .  (18) 

We denote by P(k, y )  the function P(&, y + 1) defined by (8). This should not cause 
any confusion. Write 

then 

go = 4 3 2 ’ ~ ’ ~  gl = - 4 3 2 ~ ~ ~ 9 3  

g2= 16y4+ 192y5+645y6-516y7-5826y8-4116y9 

+9349yL0- 11400y” - 4 2 6 7 2 ~ ’ ~  -98O0yI3 

+ 7 3 5 0 ~ ’ ~  - 4500y15+ 175Oyl6+ 3 125y2’ 

93= - 1  -12y-48y2-5693+42y4+12ys- 100y6+ 132y7+625yI2 

g 4 = y .  

Equation (19) can be rewritten as 

2 

y2(432y“ - k 2  - k93/2y2)* - ( k2/4y2) M = 0 (20a) 

where 

M = ( 1  + 5y + 5y2)’( 1 + y +  y’)( 1 +4y  - 5 9 ’ -  10y3 

+ 44y4 - 889’ + 1219‘ - 1 10y7 + 5 5 ~ ~ ) ’ .  (206) 

The authors wish to thank Barry Cipra for several helpful discussions. One of us (CT) 
wishes to thank R J Baxter and B A Robson for the invitation to visit and the hospitality 
at The Australian National University where this work was begun. 
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